Что такое QLED-телевизоры и причем тут квантовая физика
Еще недавно при выборе телевизора мы ломали голову, что взять, обычный LED или OLED, а нас уже еще больше запутывают новой технологией. Эти телевизоры стали появляться в магазинах сравнительно недавно и стоят они пока заметно дороже. Так за что нам предлагают переплатить? Мало, кто может дать четкий ответ даже среди продавцов-консультантов. Попробуем разобраться благодаря нижеследующей статье и видеороликам.
QLED – относительно новое слово на рынке экранных технологий. Компания Samsung активно продвигает телевизоры с дисплеями на квантовых точках, позиционируя их как революционное решение. Однако многие не знают, что же это такое, некоторые даже путают QLED с OLED из-за похожести этих аббревиатур.
Квантовые точки – это новая технология подсветки экрана, в основе которой лежит использование миниатюрных (несколько нанометров) частиц полупроводников, способных излучать свет под воздействием потока электронов или фотонов. Цвет свечения этих частиц определяется их размером и химическим составом полупроводника. Для изготовления точек используются соединения марганца, цинка, кадмия, а их габариты составляют от 2 (синие) до 6-8 (красные) нанометров.
Размеры квантовых точек и длина оптических волн разного цвета © Nanosys
Чтобы разобраться, что такое QLED-телевизоры и чем они особенны, стоит внести небольшую ясность в термины, во избежание путаницы. Поэтому для начала – небольшой глоссарий.
- LCD – экран, в котором активным элементом выступают жидкие кристаллы (ЖК). Они оснащаются тремя разноцветными (красными, синими и зелеными) светофильтрами на каждый пиксель, и пропускают свет в зависимости от поданного напряжения (0 вольт – не пропускают совсем, максимум – пропускают с максимальной яркостью). Сами ЖК светиться не умеют, свет на них подается от установленной по краю экрана подсветки через рассеивающую пленку. LCD-экраны бывают разных типов: TN, IPS, SVA, PVA. В телевизорах наиболее распространены панели *VA.
- LED – просто светодиод. В случае с экранами под этим термином подразумевают LCD матрицу, для подсветки которой используются ленты светодиодов (в отличие от популярных в прошлом трубчатых люминесцентных ламп CCFL). Практически все современные ЖК-телевизоры используют LED-подсветку, модели с CCFL сейчас почти не выпускаются.
- OLED – экран на органических светодиодах. Активным элементом такого дисплея являются миниатюрные (десятки или сотни микрометров) светодиоды на основе органических соединений. В таких матрицах светятся сами пиксели, состоящие из трех диодов синего, красного и зеленого цвета, подсветка по периметру им не нужна. Управление OLED матрицей тоже осуществляется по напряжению, подаваемому на TFT-транзистор субпикселя (чем выше – тем ярче). AMOLED, P-OLED, SuperAMOLED – это разновидности одной технологии.
- TFT – тонкопленочный транзистор. Активный элемент, используемый для управления субпикселем. Все современные телевизоры (не важно, OLED, LCD или QLED) используют TFT для регулировки напряжения на пикселях и, как следствие, их яркости и цвета.
Что такое QLED экран и как он устроен
Емкости с квантовыми точками разного размера светятся под действием ультрафиолета © Area-Info.net
С терминами разобрались – можно переходить к описанию экранов на квантовых точках. Начать стоит с того, что QLED не имеет никакого отношения к OLED. Это принципиально разные технологии экранов. Дисплеи на квантовых точках имеют классическую LCD матрицу (обычно *VA) с LED подсветкой по краю. Это просто новая разновидность жидкокристаллических экранов.
Ключевым отличием от старых матриц (часто называемых сокращенно LED LCD) является способ переноса света от излучающего элемента (подсветки) к пикселям. В обычных ЖК панелях картинка формируется следующим образом:
- Лента светодиодов по краю экрана светится чистым белым цветом. Ее яркость зависит от настроек и остается неизменной в процессе работы.
- Через специальный рассеивающий слой, расположенный за матрицей жидких кристаллов, белый свет от ленты передается на них (кристаллы).
- Каждый пиксель состоит из трех скоплений кристаллов субпикселей, имеющих свои светофильтры: красный, синий и зеленый. Проходя через жидкие кристаллы и фильтры, расположенные поверх них, белый свет приобретает цвет, заданный фильтром (на выходе красного – красный, и т.д.).
- TFT-транзистор управляет подачей напряжения на кристаллы. Чем оно выше – тем больше света пропускает субпиксель. За счет комбинации яркостей красного, синего и зеленого кристаллов достигается конечный цвет пикселя. Обычно возможны до 16,7 млн комбинаций яркостей: от черного (напряжения нет, все три субпикселя не пропускают свет) до чисто белого (напряжение максимальное, все три субпикселя пропускают весь поступающий на них свет).
Слои LCD LED (снизу вверх): рассеиватель подсветки, поляризатор, TFT транзисторы, жидкие кристаллы, светофильтры, поляризатор © AWOK.com
В панелях QLED инженеры изменили способ передачи света от диодов, расположенных по краю экрана, к пиксельной сетке. В составе таких дисплеев появился «посредник» в виде слоя квантовых точек. Эти экраны работают по следующему алгоритму:
- Лента светодиодов по краю матрицы излучает свет, обычно он синий. Как и у обычных LCD экранов, яркость задается настройками и не меняется в ходе работы.
- Слой рассеивателя подает свет от диодов на прослойку квантовых точек. Они возбуждаются и начинают издавать люминесцентное свечение вне зависимости от оттенка подаваемого света: достаточно просто потока фотонов. Цвет точки зависит от того, какой размер и состав она имеет (см. выше). То есть, даже если подсветить 2-нанометровые частицы бирюзовым или фиолетовым – они будут светиться синим.
- Свет от точек поступает на кристаллы, положением которых управляет транзистор. Чем большее напряжение он подает – тем ярче светится субпиксель.
- Субпиксели оснащаются светофильтрами, красного, синего и зеленого цвета. Комбинация из трех разноцветных субпикселей, формирует конечный цвет пикселя за счет комбинации яркостей трех субпикселей.
Как можно заметить, ключевое изменение всего одно. В обычной матрице LCD телевизора окончательный цвет субпикселя формируется уже после того, как свет пройдет через рассеиватель, жидкий кристалл и фильтр (до этого момента он белый). В QLED цвет задается только после рассеивателя, слоем квантовых точек. На кристалл поступают волны синего, красного и зеленого цветов, отделяемые фильтрами.
Слои экрана QLED (снизу вверх): подсветка, квантовые точки, поляризатор, TFT транзисторы, жидкие кристаллы, светофильтры, поляризатор © DSCC
Изменив порядок формирования цвета пикселя, разработчикам QLED удалось добиться повышения КПД подсветки.
Во-первых, с квантовыми точками снижаются требования к качеству ее цветопередачи. Это значит, что можно использовать более долгоживущие и энергоэффективные светодиоды, пусть и с ухудшением некоторых их параметров (оно теперь не играет роли). Главное, чтобы было ярко.
Во-вторых, использование светообразующих точек прямо под кристаллами (после рассеивателя) увеличивает яркость свечения, так как потери яркости на светодиодах подсветки (которые в обычном LCD для образования белого покрываются люминофором, не нужным для QLED) и рассеивателе снижаются. В итоге яркость экрана увеличивается, цветовой охват расширяется, а потребление энергии остается прежним, или даже снижается.
Кроме того, возможно создание экранов без пассивных светофильтров. В них массивы квантовых точек будут располагаться поверх ЖК-слоя, следовательно, потерь света станет еще меньше.
QLED экран без светофильтров, слои (снизу вверх): синяя подсветка, поляризатор, TFT транзисторы, жидкие кристаллы, поляризатор, массивы квантовых точек разных цветов © DSCC
Минусами QLED телевизоров являются склонность к выгоранию квантовых точек (пусть и гораздо меньшая, чем у OLED), а также (пока что) сравнительно высокая цена. Однако освоение технологии должно сделать такие ТВ гораздо доступнее, а эффект выгорания выражен слабо, ресурс матрицы может оказаться больше срока эксплуатации устройства.
Причем тут квантовая физика?
Сегодня разработки в области квантовой физики ассоциируются, в основном, с квантовыми компьютерами, в основе работы которых лежит использование принципа квантовой запутанности. Однако экраны телевизоров на квантовых точках прямого отношения к этой технологии не имеют.
Из «квантового» у точек подсветки только то, что при столь миниатюрных размерах частиц полупроводника (нанометры) в них проявляются квантовые эффекты. А механизмы излучения нанокристаллами полупроводника фотонов под воздействием электрического заряда (или света) описываются именно законами квантовой механики.
Зависимо от размера, квантовые точки излучают свет разных цветов, до квантового ограничения © Public Information Display
Этими законами описывается еще много чего в нашем мире (а если в целом – то на микроуровне ими описывается вообще все), но слово то красивое, вызывающее ассоциации с технологиями будущего, а потому удачное для использования в рекламе. Вот и выбрали эту особенность в качестве ключевой для маркетингового именования технологии.
Хотя, с тем же успехом, экраны QLED телевизоров могли бы называться не «дисплеями на квантовых точках», а «дисплеями на нано-кристаллах» или еще как-то. Ведь из квантового у них – только принцип формирования светового излучения, в то время основа матрицы и подсветки вполне подчиняются законам классической механики. И являются эти матрицы не какой-то революцией, а всего лишь следующей ступенькой эволюции давно освоенных ЖК-телевизоров.
Ну и видео для тех, кто совсем отстал в этом вопросе :)
Комментарии
Изучал я недавно этот вопрос.
Моё, мнение с точки зрения потребителя.
Единственное слабое место OLED - выгорание/деградация пикселей и остаточное изображение. И с тем, и с другим можно столкнуться, как правило, в довольно отдалённой перспективе, если не нарвётесь на заводской брак или купите телевизор в магазине с витрины.
В остальном сплошные плюсы и всем остальным технологиям до OLED ещё пёхать и пёхать (относительно высокий инпут-лаг уже практически в прошлом).
LED - всё не плохо, технология обкатана. Единственное, что если заморачиваетесь в перспективе с HDR - берите топовые линейки.
Qled.
Очешуительная яркость (конкурентов просто нет), очень низкий инпут-лаг.
Но в первом случае яркость такая, что невольно начинаешь щуриться (плюс неестесственная цветовая гамма), а выдающийся инпут-лаг оценят только довольно прошаренные геймеры, которые, кстати, всё-таки предпочитают хорошие мониторы. Во всём остальном - обычный LED.
Пы.сы.: последний видеоролик - конкретный бред от школоло. Говорить ещё не научился и всё туда же.
Для себя выбирал из: 65 OLED C8, 65Q8FN,65XF9005. Пока остановился на Соньке: используют матрицу VA (кстати, и угол обзора уже довольно приличный), так что чёрный очень даже неплох, цветоая гамма традиционно естесственная, по обработке динамики движения может уделать иной QLED. Наличие FALD-подсветки. Ценник ниже, чем на КУ-Леды и ОЛЕД-ы.
Так сказать, оптимал. Но хочется всё же OLED. Смущает выгорание и остаточное изображение, в отношении которых идут основные холивары на профильных форумах. Но тут, как говориться, пока не купишь, не поймёшь.
Отправить комментарий