Как работает Wi-fi. История беспроводных сетей и как они работают.
На фотографиях ниже изображены Джордж Антейл и Хеди Ламарр — два деятеля культуры (композитор и актриса) и по совместительству изобретатели. В определенных кругах эта пара известна своей концепцией передачи информации по радио, которая впоследствии нашла применение в Wi-fi, GPS, Bluetooth и… Короче, много где.
Во время Второй мировой войны Хеди и Джордж предложили систему для дистанционного управления торпедами. Как не иронично, основной проблемой управляемых торпед того времени была их система управления. Она работала на одной частоте, и если противник обнаруживал угрозу, то «бил» по слабому месту торпеды: отправлял помехи на несущей частоте.
Идея новаторов заключалась в том, чтобы отправлять сигнал частями на разных частотах. Сейчас эта концепция известна как псевдослучайная перестройка рабочей частоты. Технически синхронизацию частот предлагалось осуществлять с помощью пружинных двигателей. Ребята даже получили патент на свою разработку и предложили её армии США, но идею реализовали только в 60-х годах, уже после окончания действия патента.
Порой Хеди Ламарр называют «изобретательницей Wi-fi». Но, пожалуй, такой титул несколько преуменьшает вклад других, не менее значимых открытий, которые позволяют сидеть в интернете без провода. О том, как создавалась и развивалась технология Wi-fi, читайте под катом.
Исторические предпосылки
Первые технологии беспроводной передачи информации возникли в доисторическую эпоху. Дымовые, световые и огненные сигналы, зеркала, сигнальные выстрелы и флаги — все это появилось задолго до изобретения телеграфа и телефона.
Невидимый свет
В 1880-х годах Генрих Рудольф Герц экспериментально доказал существование электромагнитных колебаний в свободном пространстве, а также сделал первые хорошо задокументированные передачи волн. Изыскания Герца в области радиоволн продолжили Оливер Лодж, Никола Тесла и Джагадиш Чандра Бос.
В 1884 году на публичной демонстрации в ратуше Калькутты Бос эффектно продемонстрировал работу микроволнового излучения. Используя волны миллиметрового диапазона, он сумел поджечь порох и позвонить в звонок на расстоянии. Впоследствии в эссе «Невидимый свет» Бос напишет: «Невидимый свет может легко пройти через кирпичные стены, здания и т. д. Поэтому с его помощью могут быть переданы сообщения без проводов».
Джагадиш Чандра Бос в Лондонском королевском институте
Подобные опыты проводили Александр Попов и Гульельмо Маркони. Последний смог предоставить первый коммерчески пригодный аппарат для беспроводной дальней телеграфии.
Метод изменения частот
В 1903 году Никола Тесла запатентовал систему, в которой передатчик и приёмник синхронно переключались между двумя каналами. Таким образом, Тесла стал автором первого известного метода изменения частот для борьбы с помехами. Новинка нашла практическое применение в 1915 году — немецкие военные начали использовать радиоприемник с изменяющимися частотами, чтобы избежать прослушки со стороны британцев.
Примечательно, что уже в начале 20-го века Тесла смог описать развитие технологии, которая приведет к беспроводному интернету. Он предложил концепцию так называемой «Всемирной Беспроводной Системы» — системы телекоммуникаций и передачи электроэнергии в глобальном масштабе. Тесла писал: «Мы сможем мгновенно связаться друг с другом… видеть и слышать друг друга так же хорошо, как если бы мы находились лицом к лицу… И инструменты, с помощью которых мы будем общаться… человек сможет носить в кармане жилета».
Башня Ворденклиф, задуманная Николой Теслой как телекоммуникационный объект «Всемирной Беспроводной Системы»
Развитие беспроводной связи между ЭВМ
В 1968 ученые Гавайского университета начали работу над проектом THE ALOHA SYSTEM. Основной целью проекта была проверка возможности использования радиосвязи вместо проводных соединений для объединения компьютеров в одну сеть.
Немного о контексте. Сам проект реализовывался на Гавайских островах — архипелаге в центральной части Тихого океана. Первоначально в одну сеть планировалось объединить учебные заведения с островов Кауаи, Оаху, Мауи и Гавайи (да, в Гавайском архипелаге есть остров Гавайи). Вычислительный центр располагался в главном корпусе Гавайского университета неподалеку от Гонолулу. Расстояние до него от других узлов доходило до 300 км. Идея протянуть кабель даже не рассматривалась.
Реализация задумки ученых основывалась на радиосвязи ближнего радиуса. Полученную систему беспроводной связи назвали AlohaNet. Всего было две версии этой сети: чистая и дискретная.
Чистая Aloha
В чистой системе каждый из терминалов отправлял данные, как только они появлялись. Разумеется, такой подход приводил к коллизиям и потерям кадров. Для обнаружения коллизий центральный компьютер, после получения кадра, отправлял его назад отправителям. Если отправитель обнаруживал коллизию, то он выжидал случайный интервал времени и отправлял кадр заново. Центральный компьютер использовал широковещательную антенну, а терминалы — направленную. Так они не получали передачи от других отправителей.
Чистая Aloha заработала в 1971 году, став первой беспроводной сетью между компьютерами. А уже через год система была модернизирована, что позволило удвоить её производительность.
Дискретная Aloha
Метод передачи данных в дискретной системе строился вокруг слотов (или тактов). Каждому терминалу выделялся временной промежуток (соответствующий времени одного кадра) для отправки данных. Для синхронизации использовался специальный синхронизирующий сигнал вначале каждого интервала.
Технологию не удалось продать и она стала общественным достоянием. В 1973 году Alona была подсоединена через спутниковую связь к ARPAnet, а в 1976 году Aloha и вовсе прекратила свою работу.
1985: открытие диапазонов частот в США
В 1980 году инженер Майкл Маркус обратился в федеральную комиссию по связи США (FCC) с предложением открыть диапазоны ISM для нелицензионного использования. И через 5 лет, в 1985 году комиссия всё же открыла диапазоны с частотой 900 МГц, 2.4 ГГЦ и 5.8 ГГЦ. После такого решения в США многие другие страны и регионы последователи примеру FCC и тоже открыли некоторые диапазоны. С этого момента стало возможным развитие коммерческих беспроводных технологий.
WaveLAN
В 80-х годах NCR Corporation — это крупная международная компания по продаже компьютеров, банкоматов и кассовых аппаратов. И они хотели, чтобы их кассы работали без проводов. Это дало бы им конкурентное преимущество: розничные магазины могли бы избежать затрат на прокладку кабелей к каждой кассе. К тому же разница между кассовым аппаратом и компьютером постепенно размывалась и NCR стремилась создать стандарт беспроводной связи, которым мог бы использоваться в любом компьютере.
К 1988 году команда под началом Вика Хейса (также известного как батя«отец» Wi-fi) разработала WaveLAN. WaveLAN мог работать на частоте 900 МГц или 2.4 ГГц со скоростью от 1 до 2 Мбит/с. Новый продукт позиционировался как беспроводная альтернатива Ethernet и Token Ring от IBM. Но высокая стоимость адаптеров (сотни долларов) и точек доступа (тысячи долларов) сделали WaveLAN нишевым продуктом, который можно было найти только в крупных компаниях.
Адаптер WaveLAN
Кроме WaveLAN существовали и другие беспроводные продукты и всё это превращалось в конкурирующую мешанину с различными реализациями и решениями. Необходимость в международном стандарте, подобном IEEE 802.3, стала очевидной. Это привело к появлению рабочей группы по стандарту беспроводной связи в IEEE.
IEEE: появление рабочей группы
NCR хотела, чтобы Вик Хейс сделал предложение IEEE от имени компании. Но Вик не согласился на такие условия: он хотел оставаться независимым. Компания согласилась на это, и в 1988 году Вик Хейс обратился в IEEE с просьбой внести свой вклад в создание стандарта беспроводной связи. Оказалось, что существующий комитет бездействовал, а председатель ушел.
Из-за того, что Вик не продвигал уже запатентованное решение от NCR, он смог завоевать доверие и сформировать рабочую группу 802.11. Технологии Ethernet и WaveLAN стали частью технической базы комитета, который начал свою работу в 1990 году. Первый стандарт, известный как 802.11, был сформирован через 7 лет.
CSIRO, OFDM и Джон О’Салливан
Местом рождения Wi-Fi можно считать лабораторию радиоастрономии CSIRO — австралийское федеральное агентство, занимающиеся научными исследованиями. В его стенах разработали множество выдающихся технологий, например атомно-абсорбционную спектроскопию.
В 1977 году исследователь CSIRO доктор Джон О'Салливан занимался поиском небольших черных дыр. Он написал статью о том, как можно использовать быстрое преобразование Фурье для повышения резкости с оптических телескопов. На основе работы Салливана в CSIRO сделали специальный процессор для расшифровки изображений. Хоть это и не помогло найти черные дыры, технология пригодилась позднее. В 1990 году Салливан возглавил группы ученых для разработки высокоскоростной беспроводной сети с пропускной способностью 100 Мбит/c. ALOHAnet и WaveLAN не предоставляли желаемых скоростей.
Джон О'Салливан (второй справа) и другие ученые CSIRO в своей лаборатории
Одной из основных технических проблем, вставших перед группой, была борьба с эффектом многолучевого распространения волн. Суть явления заключается в том, что часть электромагнитных волн отражаются от различных объектов, в результате физическая длина пути сигнала может варьироваться. Результат многолучевого распространения сигнала часто оказывается отрицательным, поскольку сигналы могут прийти в противофазе и подавить основной сигнал (своеобразное эхо). С помощью быстрого преобразования Фурье ученые из CSIRO нашли способ уменьшить эхо. Вместо того, чтобы использовать один быстрый беспроводной канал, они использовали множество более медленных каналов. Такая техника называется модуляцией с несколькими несущими. Этот тип модуляции хорошо подходит для широкополосной связи на короткие расстояния (как в Wi-Fi). Сегодня современные стандарты Wi-Fi используют модуляцию с несколькими несущими в форме мультиплексирования с ортогональным частотным разделением (OFDM).
Хотя ученые из CSIRO не изобретали основных методов, используемых в их разработках, их заслуга заключалась в том, что путем испытаний сотен техник они нашли нужные — модуляция с несколькими несущими + прямое исправление ошибок + чередование частот для отправки нескольких копий данных. По отдельности этим методы были известны и ранее. В CSIRO же разработали уникальную комбинацию, которая давала высокие скорости. В 1996 году на нее был выдан патент США № 5 487 069.
Стоит отметить, что CSIRO никогда не предоставляла предложений по исходному стандарту IEEE 802.11 1997 года или какой-либо из его редакций. 802.11а и более поздние стандарты используют OFDM и модуляцию с несколькими несущими без лицензионного соглашения, несмотря на то, что во время разработки 802.11а CSIRO предложила IEEE лицензировать свой патент. Спустя годы CSIRO использовала это как основу для судебных исков против крупных сетевых и технологических компаний. CSIRO выиграла урегулирование на сумму 205 миллионов долларов в 2009 году и еще 229 миллионов долларов в 2012 году.
Стандарты
На данный момент существует множество разных стандартов беспроводных локальных сетей 802.11. Некоторые из них пользуются намного большей популярностью, например 802.11n и 802.11ac. Кроме того, современные устройства работают сразу в нескольких режимах (802.11 b/g/n).
У стандартов много общего. Самое главное сходство — использование радиоэфира для передачи данных. Интересно, но в самом первом стандарте 802.11 также использовалось инфракрасное излучение. Сегодня такой способ используется в пультах дистанционного управления (например пульт от телевизора). Со второго поколения стандарта используются только радиоволны. Все варианты физического уровня работают с одним и тем же алгоритмом доступа к среде, CSMA/CA. Структуры кадров канального уровня всех стандартов идентичны.
Различия спецификаций заключается в используемом частотном диапазоне, методах кодирование и, как следствие, в скорости передачи данных. Некоторые временные параметры уровня MAC также могут отличаться.
Наиболее популярные стандарты семейства IEEE 802.11
Начиная с 1999 года метод мультиплексирования OFDM пришел на смену методам DSSS и FHSS первых версий. Спустя еще 10 лет стандарт был дополнен поддержкой метода MIMO. Выделим общие свойства стандартов семейства IEEE 802.11:
- Одна и та же топология.
- Все стандарты поддерживают в качестве рабочего диапазона частот либо 2,4 ГГц, либо 5 ГГц, либо оба эти диапазона. 802.11ax может включать дополнительные полосы частот в диапазонах от 1 до 7 ГГц, по мере их появления.
- Один и тот же способ доступа к разделяемой среде CSMA/CA — метод прослушивания несущей частоты с множественным доступом и предотвращением коллизий.
- Одинаковая структура кадра канального уровня.
- Все стандарты имеют адаптивный механизм изменения скорости передачи в зависимости от расстояния до приемника. Адаптация может происходить за счет изменения метода кодирования сигнала — например, для увеличения скорости передачи данных точка доступа может перейти от кодирования 16-QAM к кодированию 64-QAM.
- При использовании техники OFDM точка доступа может, наряду с изменением метода кодирования, увеличить количество частотных подканалов, выделяемых пользователю.
В предыдущей статье о Wi-Fi мы рассказывали об истории беспроводных сетей: первой беспроводной сети AlohaNet, коммерческой WaveLan и IEEE, который поспособствовал стандартизации беспроводных устройств. Вот, кстати, ссылочка на первую публикацию. В этой части цикла про Wi-Fi мы расскажем о сигнале, передающем информацию, а именно: как аналоговые электромагнитные волны передают цифровой сигнал, как модулируется сигнал и что такое мультиплексирование.
Аналоговые и цифровые сигналы
Сигнал — это некий носитель информации, с помощью которого передается информация. Это может быть электромагнитная волна, свет, звук, да и в принципе, практически всё, что угодно может выступать в роли сигнала. Если представить сигнал в виде математической функции от времени, то сигнал окажется либо аналоговым, либо цифровым.
Аналоговый сигнал изменяется во времени постепенно и непрерывно: он не имеет разрывов или пауз. В идеализированном понимании цифровой сигнал противопоставляется аналоговому. Цифровой сигнал на некотором интервале имеет постоянную интенсивность и изменяется моментально.
Аналоговый сигнал для непрерывных данных, например записи голоса
Цифровой сигнал для дискретных данных, например набора битов.
Аналоговый сигнал в виде электромагнитной волны может распространяться через множество сред: оптоволокно, витая пара, по воздуху. В то же время цифровой сигнал можно передавать с помощью проводов через напряжения: постоянная положительная величина будет означать 1, а отрицательная 0.
Свойства сигналов
Скорость и качество передаваемых данных зависит как от особенностей самих сигналов (мощность, способ кодирования), так и от характеристик линии связи (задержка, полоса пропускания, частота ошибок). Рассмотрим основные свойства сигналов.
Синусоида
Процессы могут описываться различными функциями: аналоговыми, дискретными, периодическими и непериодическими. Фундаментальным случаем аналоговой периодической функции является синусоида. Её фундаментальность заключается в том, что она описывает многие природные процессы, например, высоту волны в жидкости и уровень напряжения в электрической цепи.
В общем случае синусоида как функция от времени имеет следующие параметры:
- Амплитуда () — максимальное значение функции или интенсивность сигнала во времени. Для модулированного сигнала, передаваемого по линии связи, амплитуда равна напряжению (измеряется в вольтах);
- Период () — время, за которое происходит повторение сигнала ;
- Частота () — темп повторения сигнала (в периодах за секунду, или герцах). Иными словами, частота определяет, сколько полных колебаний синусоиды происходит за единицу времени. Такая характеристика сигнала еще называется циклической частотой. Коэффициент (период функции равен ) при аргументе носит специальное название круговой частоты, и обозначается ;
- Фаза — относительное значение аргумента в пределах одного периода. Фаза колебаний показывает, какая часть периода прошла с момента последнего прохождения функции через нуль при движении из отрицательной в положительную область. Начальное значение фазы показывает сдвиг синусоиды относительно начала точки отсчета времени.
Структура синусоиды
Мы рассмотрели синусоиду как функцию от времени в некоторой фиксированной точке пространства. Однако можно использовать представление, когда значения функции изменяются в зависимости от расстояния x. Существует соотношение между двумя синусоидальными сигналами, которое отражает взаимосвязь временной и пространственной периодичности.
У синусоиды есть параметр — длина волны, который является аналогом периода синусоиды . Длина волны () — это расстояние, на которое перемещается волна за время периода . Таким образом, скорость распространения волны . Так как электромагнитные волны распространяются в вакууме со скоростью света, то справедливо соотношение или .
Спектральное разложение
Свойства синусоидальных функций делают их эффективным инструментом изучения сигналов. Из теории гармонического анализа Фурье известно, что любой периодический процесс можно представить в виде суммы бесконечного набора синусоидальных колебаний различных частот и различных амплитуд. Такой набор называется спектральным разложением, а синусоидальные колебания определенной частоты — гармониками.
Представление периодического аналогового сигнала суммой синусоид
Все информационные сигналы имеют конечную длительность. Если представить, что сигнал бесконечно повторяется снова и снова, то его можно разложить в ряд Фурье. Таким образом, любой процесс, описываемый произвольной функцией может быть представлен в виде некоторого набора синусоидальных функций. На практике во внимание принимается только несколько первых, значимых гармоник, так как амплитуды последующих быстро убывают и вносят незначительный вклад в форму исходного сигнала. Самая первая частота называется основной гармоникой, а разность между максимальной и минимальной частотами значимых гармоник — шириной спектра сигнала.
Затухания и полоса пропускания
Любая передача информации связана с передачей энергии. Следовательно, понятие мощности сигнала является чрезвычайно важным. Мощность синусоидального сигнала пропорциональна квадрату его амплитуды. Интуитивно понятно, что при прохождении среды передачи мощность сигнала уменьшается. Так вот, затухание показывает, насколько уменьшается мощность эталонного сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии.
Влияние затухания на форму прямоугольного импульса
Ни один канал связи не может передавать сигналы без потери мощности. Если бы все гармоники ряда Фурье уменьшались при передаче в равной степени, то сигнал уменьшался бы по амплитуде, но не искажался. К сожалению, все каналы связи уменьшают гармоники в разной степени, тем самым искажая передаваемый сигнал. Степень затухания мощности синусоидального сигнала зависит от частоты и эта зависимость характеризует линию связи.
Полоса пропускания — это непрерывный диапазон частот, для которого затухание не превышает некоторый заранее заданный предел. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии без значительных искажений.
Помехи
Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них — помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи или приема, и искажает его.
Искажение импульсов в линии связи
Пропускная способность
Пропускная способность — величина, характеризующая максимальную скорость передачи данных, которая может быть достигнута на этой линии. Особенностью пропускной способности является то, что она зависит как от характеристик физической среды (затухания и полосы пропускания), так и от способа передачи данных (кодирования). Дело в том, что кодирование определяет спектр передаваемых сигналов. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться. Если же значимые гармоники выходят за границы полосы пропускания, то сигнал будет значительно искажаться, что усложнит распознавание информации.
Соответствие между полосой пропускания и спектром сигнала
В большинстве способов кодирования используется изменение одного или нескольких параметров периодического электрического сигнала — частоты, амплитуды и фазы синусоиды или же уровня напряжения/тока последовательности импульсов. Эти параметры называют информационными параметрами сигнала. Периодический сигнал, параметры которого подвергаются изменениям, называют несущим сигналом. Процесс изменения информационных параметров несущего сигнала в соответствии с передаваемой информацией называется модуляцией (кодированием). Измененный в результате кодирования несущий сигнал называют информационным сигналом. Изменение информационного параметра сигнала происходит через фиксированный интервал времени, называемый тактом. Величина, обратная значению такта, является тактовой частотой линии.
Резюме
Итак, попробуем теперь собрать все вышеизложенное вместе. В общем случае любой цифровой сигнал имеет бесконечную ширину полосы. Если мы попытаемся передать этот сигнал через какую-то среду, передающая система наложит ограничения на ширину полосы, которую можно передать. Чем больше передаваемая полоса, тем больше стоимость передачи. Поэтому цифровую информацию аппроксимируют сигналами с ограниченной шириной полосы. С другой стороны, при ограничении ширины полосы возникают искажения, затрудняющие интерпретацию принимаемого сигнала. Чем больше ограничена полоса, тем больше искажение сигнала и тем больше потенциальная возможность возникновения ошибок при приеме.
Естественно, нам хотелось бы максимально эффективно использовать имеющуюся полосу. Для цифровых данных это означает, что для определенной полосы желательно получить максимально возможную скорость передачи, учитывая помехи и ошибки. В этом помогают различные техники модуляции.
Модуляция сигнала
В системах связи используют как цифровые, так и аналоговые сигналы. Но в рамках беспроводной связи между компьютерами, где в качестве сигнала используется электромагнитная волна, а данные — дискретные, возникает необходимость в модуляции — преобразовании двоичных данных в аналоговый сигнал.
Сама по себе модуляция двоичных данных не ограничивается беспроводной связью. Показательный пример — это передача двоичных данных по телефонным кабелям или каналам тональной частоты. Они имеют полосу пропускания 3.1 КГц и передают частоты в диапазоне от 300 Гц до 3400 Гц. Это меньше, чем воспринимаемый человеком диапазон звуков — от 20 Гц до 20 КГц, но достаточный для передачи большинства звуков. Для передачи цифрового сигнала такой полосы пропускания недостаточно (с приемлемой, на момент применения в качестве канала связи телефонной инфраструктуры, скоростью), поэтому использовалась аналоговая модуляция: данные поступали от компьютера в модем и он модулировал аналоговый сигнал.
В качестве кодирующего параметра можно использовать три характеристики электромагнитной волны: амплитуду, частоту и фазу. Рассмотрим каждый из них.
Амплитудная модуляция
При амплитудной модуляции для кодировки разных логических значений используются сигналы несущей частоты с разной амплитудой. В простейшем случае при кодировании 2 значений (логической единицы и логического нуля) используют сигнал с двумя возможными амплитудами: А1 для единицы и А2 для нуля.
Амплитудная модуляция в подвержена помехам и в основном используется в сочетании с другими видами модуляции.
Частотная модуляция
Для частотной модуляции используются несколько сигналов разной частоты, расположенные вблизи к несущей частоте. Одним из вариантов частотной модуляции является бинарная. В ней логический нуль и логическая единица кодируется двумя сигналами с частотами f1 и f2, смещенные относительно несущей частоты на одинаковое расстояние:
Также частотную модуляцию можно осуществлять с помощью нескольких сигналов. Такая схема называется многочастотной модуляцией. Такой вид модуляции в большей степени подвержен ошибкам, чем бинарная, но позволяет закодировать большее количество информации. В ней каждая сигнальная посылка кодирует несколько битов информации. Вот пример четырехуровневой частотной модуляции:
Фазовая модуляция
В фазовой модуляции используются сигналы одинаковой частоты, но со смещением по фазе. Наиболее простым вариантом фазовой модуляции является двухуровневая модуляция. В ней используется два сигнала, смещенные по фазе (один — 0, другой 180). Один из них кодирует логическую единицу, а другой логический нуль.
Другой вариант фазовой модуляции — дифференциальная. Суть метода заключается в сравнении фазы не с эталоном, а с предыдущим пакетным символом. Если следующий символ логический нуль, то фаза не меняется. Если единица — меняется на противоположную:
Также, как и в случае с предыдущими модуляциями, метод можно расширить: использовать не два варианта фаз, а больше.
Квадратурная амплитудная модуляция (QAM)
Для повышения производительности канала связи прибегают к комбинаторным методам модуляции. Один из популярных вариантов, который используется в Wi-FI — это квадратурная амплитудная модуляция (QAM). В ней используется фазовая и амплитудная модуляции.
В квадратурной амплитудной модуляции используется несколько сигналов на одной частоте с разной фазой. В простейшем случае получается 4 возможных состояния: 2 по частоте и 2 по амплитуде. Метод можно расширять, но вероятность ошибки увеличивается. Для их избежания используется следующая схема: запрещено использовать одинаковую амплитуду соседним по фазе сигналам. Например, при использовании 4 амплитуд и 8 фаз будет доступно 16 состояний (0000, 0001, …., 1111).
Физический уровень стандарта IEEE 802.11
Физический уровень стандарта IEEE 802.11 состоит из двух подуровней. PLCP — этот уровень управляет обменом кадров между MAC-подуровнем и физическим уровнем. PMD — подуровень зависимости от физической среды. Этот подуровень обеспечивает интерфейс со средой передачи данных. Он определяет характеристики беспроводной среды и метод передачи данных беспроводными станциями через нее.
Спецификации семейства 802.11 имеют различные характеристики: скорость передачи, диапазон частот, ширину канала и т.д. Ниже приведены технические характеристики спецификаций физического уровня:
Частотные диапазоны
Порядок и правила использования радиочастотного спектра определяется государством. В России роль регулятора выполняет Государственная комиссия по радиочастотам (ГКРЧ). В США за регулирование отвечает FCC, в Европе — ERO и ETSI. Правила использования радиочастотного спектра необходимы для того, чтобы множество беспроводных устройств могло одновременно использовать одну полосу частот, не создавая помех друг другу.
В России для беспроводных сетей стандарта 802.11 выделены одна полоса в диапазоне 2,4 ГГц (2400-2483,5 МГц) и две полосы в диапазоне 5 ГГц (5150-5350 МГц и 5650-6425 МГц). Частотные диапазоны 2,4 и 5 ГГц, в свою очередь, разбиваются на каналы, ширина и количество которых зависит от спецификации 802.11 и особенностей радиочастотного регулирования в конкретном государстве.
Расширение спектра
Технологии модуляции определяют, каким образом и на какой скорости данные передаются через беспроводную среду. Рассмотрим две основных приема — расширение спектра и мультиплексирование.
Технологии расширения спектра являются базовыми при организации передачи данных в беспроводных сетях стандарта 802.11. Изначально их использовали для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. При этом преобразовании мощность исходного сигнала не изменяется, а распределяется по более широкой полосе пропускания и становится сопоставима с мощностью шумов. Это позволяет сделать сигнал невосприимчивым к различным типам шумов и искажениям, дает возможность скрывать и шифровать сигналы и одновременно использовать одну полосу частот несколькими пользователями.
Первая разработанная схема расширенного спектра известна как метод перестройки частот (FHSS). Её суть заключается в постоянной смене несущей в пределах широкого диапазона частот. В результате мощность сигнала распределяется по всему диапазону, и прослушивание какой-то определенной частоты дает только небольшой шум. Последовательность несущих выбирается псевдослучайно. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции (например, частотная или фазовая).
Перестройка частоты
Физический уровень FHSS стандарта 802.11 позволяет выполнять передачу данных на скоростях 1 и 2 Мбит/с. В более новых спецификациях (802.11b и 802.11g) используется более совершенный метод прямой последовательности (DSSS), более приспособленный для передачи данных на высоких скоростях. В DSSS также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от FSSS весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон. Как и в случае FHSS, для кодирования результирующего кода может использоваться любой вид модуляции.
Каналы, используемые в технологии DSSS
Мультиплексирование
Одна из основных проблем построения беспроводных систем — это решение задачи доступа многих пользователей к ограниченному ресурсу среды передачи. Существует несколько базовых методов доступа (мультиплексирования), основанных на разделении между станциями таких параметром, как пространство, время, частота и код. Задача мультиплексирования — выделить каждому каналу пространства, время, частоту и/или код с минимумом взаимных помех и максимальных использованием характеристик передающей среды.
В новых стандартах 802.11 используется механизм мультиплексирования посредством ортогональных несущих частот (OFDM). Его суть заключается в том, что весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из всего множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N – число поднесущих, назначенных данному передатчику. Распределение поднесущих в ходе работы может динамически изменяться. Схема OFDM имеет несколько преимуществ: она помогает подавлять межсимвольную интерференцию и бороться с селективным замиранием.
Защита от ошибок
Как говорилось ранее, при передаче данных, особенно по беспроводной среде, непременно будут возникать ошибки. Существуют три наиболее распространенных орудия борьбы с ними:
- Коды обнаружения ошибок. Основан на передаче в составе блока данных избыточной служебной информации (контрольная сумма, FCS), по которой можно судить с некоторой степенью вероятности о достоверности принятых данных.
- Коды с коррекцией ошибок. Позволяет приемнику не только понять, что присланные данные содержат ошибки, но и исправить их. Коды, которые обеспечивают прямую коррекцию ошибок, требуют введения большей избыточности в передаваемые данные, чем коды, которые только обнаруживают ошибки.
- Протоколы с автоматическим запросом повторной передачи. В простейшем случае защита от ошибок заключается только в их обнаружении. Система должна предупредить передатчик об обнаружении ошибки и необходимости повторной передачи.
Антенны MIMO
Пусть антенна — это проводник, который может излучать и улавливать в/из окружающей среды электромагнитные волны. В 2008 году в новый стандарт Wi-Fi 802.11n вошла новая технология MIMO — multiple-in multiple out. Суть MIMO заключается в использовании нескольких антенн на передатчике и приемнике, передающих сигнал в отдельных пространственных потоках (например с использованием поляризации). При этом передающие и принимающие антенны разносятся таким образом, чтобы их сигналы слабо воздействовали друг на друга. MIMO помогает увеличить пропускную способность канала, либо улучшить качество передачи за счет избыточных антенн.
Различные конфигурации систем с разным числом антенн
Комментарии
Отправить комментарий