На дне: что угрожает подводным интернет-кабелям
Практически вся связь на планете обеспечивается посредством кабелей, которые протянуты между государствами и материками. На начало 2017 года в мире насчитывалось 428 кабелей, пролегающих под водой, общей длиной 1,1 миллиона километров. Все они обладают различной пропускной способностью. Рекордсмен по этому показателю — кабель Marea между Вирджинией и Бильбао (160 Тбит/с). По разным источникам, подводные кабели транслируют порядка 95–99% всех данных.
Но при этом они регулярно повреждаются. С этим столкнулись еще в XIX веке, когда прокладывали телеграфные кабели. У первого кабеля, проложенного в Мюнхене вдоль реки Изар, была недостаточная гидроизоляция, поэтому он быстро вышел из строя. В 1858 году проложили первый телеграфный кабель через Атлантический океан. Он вышел из строя меньше чем через месяц, из-за того, что операторы подавали на него слишком большое напряжение с целью повысить скорость передачи данных.
Истоки межконтинентальной связи.
Практика прокладывания кабеля через океан берет начало еще с XIX века. Как сообщает википедия, первые попытки соединить два континента проводной связью были предприняты еще в 1847 году. Успешно связать Великобританию и США трансатлантическим телеграфным кабелем удалось только к 5 августа 1858 года, однако уже в сентябре связь была утеряна. Предполагается, что причиной стали нарушение гидроизоляции кабеля и последующая его коррозия и обрыв. Стабильная связь между Старым и Новым светом была установлена только в 1866 году. В 1870 году был проложен кабель в Индию, что позволило связать напрямую Лондон и Бомбей. В эти проекты были вовлечены одни из лучших умов и промышленников того времени: Уильям Томсон (будущий великий лорд Кельвин), Чарльз Уитстон, братья Сименсы. Как видно, почти 150 лет назад люди активно занимались созданием по протяженности в тысячи километров линий связи. И на этом прогресс, понятное дело, не остановился. Однако, телефонная связь с Америкой была установлена только в 1956 году, а работы длились почти 10 лет. Подробно об укладке первого трансатлантического телеграфного и телефонного кабеля можно прочитать в книге Артура Кларка «Голос через океан».
Устройство кабеля
Несомненный интерес представляет непосредственное устройство кабеля, который будет работать на глубине в 5-8 километров включительно.
Стоит понимать, что глубоководный кабель должен иметь следующий ряд базовых характеристик:
- Долговечность
- Быть водонепроницаемым (внезапно!)
- Выдерживать огромное давление водных масс над собой
- Обладать достаточной прочностью для укладки и эксплуатации
- Материалы кабеля должны быть подобраны так, чтобы при механических изменениях (растяжении кабеля в ходе эксплуатации/укладки, например) не изменялись его рабочие характеристики
Рабочая часть рассматриваемого нами кабеля, по большому случаю, ни чем особым от обычной оптики не отличается. Вся суть глубоководных кабелей заключена в защите этой самой рабочей части и максимального увеличения срока его эксплуатации, что видно из схематического рисунка справа. Давайте по порядку разберем назначение всех элементов конструкции.
Полиэтилен — внешний традиционный изоляционный слой кабеля. Данный материал является отличным выбором для прямого контакта с водой, так как обладает следующими свойствами:
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой.
Мировой океан содержит в себе, фактически, все элементы таблицы Менделеева, а вода является универсальным растворителем. Использование такого распространенного в хим. промышленности материала как полиэтилен является логичным и оправданным, так как в первую очередь инженерам было необходимо исключить реакцию кабеля и воды, тем самым избежать его разрушения под воздействием окружающей среды. Полиэтилен использовался в качестве изолирующего материала в ходе прокладки первых межконтинентальных линий телефонной связи в середине XX века.
Однако, в силу своей пористой структуры полиэтилен не может обеспечить полной гидроизоляции кабеля, поэтому мы переходим к следующему слою.
Майларовая пленка — синтетический материал на основе полиэтилентерефталата. Имеет следующие свойства:
Не имеет запаха, вкуса. Прозрачный, химически неактивный, с высокими барьерными свойствами (в том числе и ко многим агрессивным средам), устойчивый к разрыву (в 10 раз прочнее полиэтилена), износу, удару. Майлар (или в СССР Лавсан) широко используется в промышленности, упаковке, текстиле, космической промышленности. Из него даже шьют палатки. Однако, использование данного материала ограничено многослойными пленками из-за усадки при термосваривании.
После слоя майларовой пленки можно встретить армирование кабеля различной мощности, в зависимости от заявленных характеристик изделия и его целевого назначения. В основном используется мощная стальная оплетка для придания кабелю достаточной жесткости и прочности, а так же для противодействия агрессивным механических воздействиям из вне. По некоторым данным, блуждающим в сети, ЭМИ исходящее от кабелей может приманивать акул, которые перегрызают кабели. Так же на больших глубинах кабель просто укладывается на дно, без копания траншеи и его могут зацепить рыболовецкие суда своими снастями. Для защиты от подобных воздействий кабель и армируется стальной оплеткой. Используемая в армировании стальная проволока предварительно оцинковывается. Усиление кабеля может происходить в несколько слоев. Основной задачей производителя в ходе этой операции является равномерность усилия в ходе намотки стальной проволоки. При двойном армировании намотка происходит в разных направлениях. При не соблюдении баланса в ходе данной операции кабель может самопроизвольно скручиваться в спираль, образуя петли.
В результате этих мероприятий масса погонного километра может достигать нескольких тонн. «Почему не легкий и прочный алюминий?» — спросят многие. Вся проблема в том, что на воздухе алюминий имеет стойкую пленку окисла, но при соприкосновении с морской водой данный металл может вступать в интенсивную химическую реакцию с вытеснением ионов водорода, которые оказывают губительное влияние на ту часть кабеля, ради которой все затевалось — оптоволокно. Поэтому используют сталь.
Алюминиевый водный барьер, или слой алюмополиэтилена используется как очередной слой гидроизоляции и экранирования кабеля. Алюмополиэтилен представляет собой комбинацию из фольги алюминиевой и полиэтиленовой пленки, соединенных между собой клеевым слоем. Проклейка может быть как односторонней, так и двухсторонней. В масштабах всей конструкции алюмополиэтилен выглядит почти незаметным. Толщина пленки может варьироваться от производителя к производителю, но, к примеру, у одного из производителей на территории РФ толщина конечного продукта составляет 0.15-0.2 мм при односторонней проклейке.
Слой поликарбоната вновь используется для усиления конструкции. Легкий, прочный и стойкий к давлению и ударам, материал широко используется в повседневных изделиях, например, в велосипедных и мотоциклетных шлемах, также применяется в качестве материала при изготовлении линз, компакт-дисков и светотехнических изделий, листовой вариант используется в строительстве как светопропускающий материал. Обладает высоким коэффициентом теплового расширения. Применение ему было найдено и в производстве кабелей.
Медная, или алюминиевая трубка входит в состав сердечника кабеля и служит для его экранирования. Непосредственно в эту конструкцию укладываются другие медные трубки с оптоволокном внутри. В зависимости от конструкции кабеля, трубок может быть несколько и они могут быть переплетены между собой различным образом. Ниже четыре примера организации сердечника кабеля:
Укладка оптоволокна в медные трубки которые заполнены гидрофобным тиксотропным гелем, а металлические элементы конструкции используются для организации дистанционного электропитания промежуточных регенераторов — устройств, осуществляющих восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения.
В разрезе получается что-то похожее на это:
Производство кабеля
Особенностью производства оптических глубоководных кабелей является то, что чаще всего оно располагается вблизи портов, как можно ближе к берегу моря. Одной из основных причин подобного размещения является то, что погонный километр кабеля может достигать массы в несколько тонн, а для сокращения необходимого кол-ва сращиваний в процессе укладки производитель стремиться сделать кабель как можно более длинным. Обычной нынче длинной для такого кабеля считается 4 км, что может вылиться в, примерно, 15 тонн массы. Как можно понять из вышеуказанного, транспортировка такой бухты глубоководного ОК не самая простая логистическая задача для сухопутного транспорта. Обычные для намотки кабелей деревянные барабаны не выдерживают описанной ранее массы и для транспортировки ОК на суше, к примеру, приходится выкладывать всю строительную длину «восьмеркой» на спаренных железнодорожных платформах, чтобы не повредить оптоволокно внутри конструкции.
Укладка кабеля
Казалось бы, имея такой мощный с виду продукт можно грузить его на корабли и сбрасывать в морскую пучину. Реальность же немного иная. Прокладка маршрута кабеля — это длительный и трудоемкий процесс. Маршрут должен быть, само собой, экономически выгодным и безопасным, так как использование различных способов защиты кабеля приводит к увеличению стоимости проекта и увеличивает срок его окупаемости. В случае прокладки кабеля между разными странами, необходимо получить разрешение на использование прибрежных вод той или иной страны, необходимо получить все необходимые разрешения и лицензии на проведение кабелеукладочных работ. После проводится геологическая разведка, оценка сейсмической активности в регионе, вулканизма, вероятность подводных оползней и других природных катаклизмов в регионе, где будут проводится работы и, в последующем, лежать кабель. Так же важную роль играют прогнозы метеорологов, дабы сроки работ не были сорваны. Во время геологической разведки маршрута учитывается широкий спектр параметров: глубина, топология дна, плотность грунта, наличие посторонних объектов, типа валунов, или затонувших кораблей. Так же оценивается возможное отклонение от первоначального маршрута, т.е. возможное удлинение кабеля и увеличение стоимости и продолжительности работ. Только после проведения всех необходимых подготовительных работ кабель можно загружать на корабли и начинать укладку.
Собственно, из гифки процесс укладки становится предельно ясным.
Прокладка оптоволоконного кабеля по морскому/океаническому дну проходит непрерывно из точки А в точку Б. Кабель укладывается в бухты на корабли и транспортируется к месту спуска на дно. Выглядят эти бухты, например, так:
Если Вам кажется, что она маловата, то обратите внимание на это фото:
После выхода корабля в море остается исключительно техническая сторона процесса. Команда укладчиков при помощи специальных машин разматывает кабель с определенной скоростью и, сохраняя необходимое натяжение кабеля за счет движения корабля продвигается по заранее проложенному маршруту.
Выглядит со стороны это так:
И, в итоге, благодаря всему этому мы можем с комфортом и на высокой скорости смотреть в интернете фото и видео с котиками со всего мира.
Нынешние кабели более надежные, но и они требуют ремонта. В этом материале узнаем, что угрожает им чаще всего.
/ Flickr / COMSEVENTHFLT / CC
Якоря
65–75% поломок подводных кабелей происходит из-за транспортных и рыболовных судов — они бросают якоря, которые попадают в кабель. 30 января 2008 года таким образом вышел из строя кабель SEA-ME-WE 4, который тянется из Франции вдоль Африки до Юго-Восточной Азии. Поломка на участке в Средиземном море привела к снижению количества трафика на 70% в Египте и на 60% в Индии. Также инцидент затронул Афганистан, Бахрейн, Кувейт, Мальдивы, Пакистан, Катар, Саудовскую Аравию и ОАЭ. Восстановить связь по другим кабелям удалось спустя сутки.
Интересно, что в декабре того же года кабель SEA-ME-WE 4, наряду с SEA-ME-WE 3 и FLAG Telecom, снова вышел из строя. До устранения поломки из стран Азии и Среднего Востока в остальной мир шло на 75% меньше трафика, чем обычно.
В 2012 году корабль бросил якорь в неправильном месте, ожидая разрешения войти в кенийский порт Момбаса. В результате был перерезан оптоволоконный кабель, и жители шести африканских государств столкнулись с проблемами со связью. Интернет стал на 20% медленнее, и это обошлоськенийской экономике в 300 миллионов фунтов.
А в 2016 году одно судно повредило сразу три кабеля, соединяющих остров Джерси в Ла-Манше с Лондоном.
Капитаны кораблей осведомлены о районах, где нельзя сбрасывать якорь из-за возможности повредить подводный кабель. Тем удивительнее становятся такие ошибки в вышеописанных случаях.
Природные катаклизмы
Различные природные явления — причины 10% поломок подводных кабелей. В 2006 году из-за землетрясения в районе Тайваня вышли из строя сразу 8 кабелей. Это привело к существенному сокращению трафика в азиатском регионе и нарушению работы интернет-сервисов.
Chunghwa Telecom, крупнейший оператор связи в Тайване, сообщил, что некоторое время полностью отсутствовала связь с Гонконгом и Юго-Восточной Азией, а в КНР поступало на 74% меньше трафика. Крупнейший оператор Гонконга PCCW заявил о снижении трафика на 50%. Два китайских оператора: China Telecom и China Unicom сообщили о снижении трафика в США и Европу на 90%, из-за чего не работали Yahoo, MSN и Hotmail.
В конце августа 2017 в Азии прошли два тайфуна: «Хато» и «Пахар». Из-за них получили повреждения четыре кабеля, которые соединяют Гонконг с Японией, Филиппинами, Малайзией, Сингапуром и США. Операторы временно перераспределили трафик по другим кабелям.
Люди
Люди — еще одна причина частых поломок. Например, в 2013 году египетские власти задержали троих человек, перерезавших кабель SEA-ME-WE 4 на участке в Средиземном море возле Александрии.
По словам главы Egypt Telecom, в результате инцидента скорость интернета в стране упала на 60%. В другое время трафик просто шел бы по другим кабелям, но именно в этот момент альтернативные EIG и IMEWE оказались на обслуживании.
Причем человеческий фактор не обходит стороной и обычные подземные кабели. В 2011 году 75-летняя грузинка искала медь в районе села Ксани и случайно перерезала оптоволоконный кабель. В результате большая часть Грузии и соседняя Армения остались на несколько часов без интернета.
Акулы не так страшны
Часто среди главных опасностей для подводных кабелей называют рыб. В интернете даже есть видео, на котором акула пытается перегрызть кабель.
Но на самом деле опасность преувеличена. По статистике ICPC (International Cable Protection Committee), рыбы «ответственны» менее чем за 1% повреждений. Также исследование показывает, что за период с 1901 по 2007 год удалось свести на нет повреждения кабелей, вызванных рыбами. С 1901 по 1957 год зафиксировано 28 таких повреждений. С 1959 по 2006 год было уже 11 случаев, а с 2007 года их вообще не наблюдалось.
Современные кабели из-за их конструкции акулы просто не могут прокусить. К тому же на многих участках кабели закопаны в землю и не «тревожат» морских обитателей.
/ Судно-кабелеукладчик Cable Innovator / Minsvyaz / PD
Как чинят кабели
Ремонт подводных кабелей производят при помощи специально оборудованных кораблей, которых по миру меньше 10. Один из таких кораблей — судно Le Pierre de Fermat длиной 100 метров и экипажем из 80 человек.
Самое сложное в процессе ремонта кабеля — это найти поврежденный участок. Для этого используется 9-тонный робот Hector, оборудованный камерами и «когтями». С его помощью нужная часть кабеля поднимается на борт для ремонта. Починка нередко подразумевает установку новой секции кабеля взамен поврежденной.
Главный инженер экипажа Уилли Поулэйн (Willy Poulain) говорит, что в последние годы процесс ремонта не изменился, и в ближайшее время этого не ожидается. Как происходит ремонт, вы можете наблюдать в этом видео.
Как укрепляют кабели
Обычный оптоволоконный кабель для глубины более 2 000 метров состоит из внутреннего оптического ядра, заключенного в оболочку из стали, обладающей высокой прочностью на растяжение, а также медного проводника. Для изоляции используется полиэтилен. Диаметр такого кабеля составляет 17–21 миллиметров.
На глубинах менее 2 000 метров добавляется защита от воздействия окружающей среды из стали и полипропилена. При необходимости, может быть использовано несколько слоев такой «брони». Прочность на разрыв самого «защищенного» кабеля достигает 70 тонн.
Поломки же случаются из-за того, что кабель в процессе эксплуатации закручивается до значений радиуса меньше рекомендованного. Поэтому для разрыва достаточно якорей и рыболовного оборудования.
В большинстве регионов выход из строя одного кабеля не скажется значительно на качестве соединения — трафик просто перераспределится по другим каналам. Но все еще существуют такие регионы, которые соединены с «большой землей» единственным проводом. Один из них — Северные Марианские острова в западной части Тихого океана. Когда этот кабель вышел из строя из-за тайфуна в 2015 году, 54 тыс. человек временно остались без интернета и телефона.
При всех недостатках, реальных альтернатив кабелям пока нет. Спутниковая связь не может обеспечить необходимой пропускной способности. А альтернативные технологии, такие как лазер-радио и квантовый интернет пока далеки от реализации «в массах».
Комментарии
Отправить комментарий