Тайна форсажного пламени: как работают двигатели истребителей
Два дня назад в России отмечали день ВВС. Познавательная статья на эту тему вам в ленту.
Ночь. На полосе замерла пара истребителей — ведущий и ведомый. Один позади другого на полсотни метров. Боевые машины готовятся к вылету. Пилот ведущего сосредоточен: он ожидает, что вот-вот поступит команда руководителя полетов… Да! Взлет разрешен, и от ведущего к ведомому по радиоволнам летят слова: «Взлетаем. Форсаж!»
Последнюю букву в слове «форсаж» ведущий произносит отчетливо. Это знак. Оба летчика одновременно ровным движением переводят ручки управления двигателями до упора вперед, в положение «полный форсаж».
Свист двигателей разрастается в рев и без пауз переходит в надрывный грохот. Из сопел вырастают длинные, почти с сам самолет, струи бело-розового форсажного пламени. Истребители начинают разбег под действием резко выросшей тяги. Большая продольная перегрузка делает рост скорости стремительным. Потому разбег и начинают синхронно, чтобы задний самолет не догнал передний и не отстал от него: здесь решают метры и доли секунды.
Задрав носы и лизнув длинными языками форсажного огня бетонку, пара отрывается от полосы и стремительно поднимается в ночное небо. Грохот удаляется, в небо уходят две звездочки с огненными хвостами. Внезапно они гаснут. Через пару секунд отдаленный грохот резко смолкает. Форсаж выключен. Истребители продолжают набор высоты на максимальном режиме двигателей.
Мгновенное усилие
Форсаж — усиленный режим работы двигателя. Слово происходит от французского forçage — «усиление, принуждение, форсирование». Форсаж дает большое, почти вдвое, увеличение тяги двигателя, уже работающего на максимальном режиме. Много тонн добавочной форсажной тяги, которая позволяет быстро разогнаться при взлете, поддерживать скорость в интенсивных маневрах, развивать сверхзвуковую скорость и догонять цель для атаки.
В форсажном двигателе между турбиной и реактивным соплом вставлена форсажная камера — большая труба с топливными форсунками спереди. На форсаже в камере сжигаются добавочные килограммы топлива. При их сгорании сильно нагревается газ перед входом в реактивное сопло. Скорость истечения из сопла вырастает вместе с реактивной силой, давая форсажный прирост тяги. При этом количество воздуха, проходящего через двигатель, не изменяется. Не увеличиваются обороты, и так максимальные. Но сильно, в несколько раз, возрастает расход топлива. А потому большинство самолетов способно двигаться в форсажном режиме лишь непродолжительное время. Если этот фактор не учесть, у пилота могут возникнуть большие проблемы.
Все ушло в струю
В нижнетагильском истребительном полку пара самолетов отрабатывала упражнение 108 — перехват крылатой ракеты AGM-28 Hound Dog в стратосфере. Один истребитель изображает цель, другой обнаруживает его в небе и атакует. Оба на сверхзвуке, времени мало; топлива всего три тонны, на форсаже оно горит очень быстро. Летчик нашел цель, зашел в атаку, сблизился, произвел пуск без ракеты. Из атаки вышел правильно, выпустил воздушные тормоза, доложил на командный пункт: «Форсаж убрал». Но на самом деле не убрал, видимо, забыв в горячке атаки. Час ночи. Летчик уже спустился из стратосферы, а форсаж все еще горит. Спустя время пилот докладывает: «Загорелась лампа аварийного остатка топлива». Руководитель полетов в ответ: «Продублируйте выключение форсажа». Только теперь летчик убрал форсаж и доложил второй раз о его выключении. Но топливо уже сгорело. Удаление до полосы сто сорок километров. Начались расчеты «дотянет — не дотянет», запросы текущего остатка топлива. Летчик доложил: «Двигатель встал». РП дал команду катапультироваться. Пилот покинул самолет в десятке километров от полосы. Дежурный вертолет в два часа ночи доставил на базу невредимого летчика. А советские ВВС лишились боевой машины.
Американский бомбардировщик Rockwell B-1 Lancer совершает полет на форсажном режиме. Сопла из его четырех двигателей F101-GE изрыгают эффектно смотрящиеся на фоне сумеречного ландшафта струи голубоватого пламени.
Час ночи. Летчик уже спустился из стратосферы, а форсаж все еще горит. Спустя время пилот докладывает: «Загорелась лампа аварийного остатка топлива». Руководитель полетов в ответ: «Продублируйте выключение форсажа». Только теперь летчик убрал форсаж и доложил второй раз о его выключении. Но топливо уже сгорело. Удаление до полосы сто сорок километров.
Мифы о форсаже
Форсаж работает в полном соответствии с законами физики, однако принцип его действия вовсе не очевиден, и зачастую предлагаемые трактовки оказываются ошибочными. Что же там происходит? Поток воздуха в воздухозаборник на форсаже не вырастает. Может быть, дело в том, что добавляется объем новых продуктов сгорания? Посчитаем. При сжигании 1 кг керосина расходуется 2,7 м³ кислорода, возникает 2,6 м³ углекислого газа и водяного пара. Баланс объема отрицательный. Сжигание форсажного керосина слегка сократит объем газов. Расход массы на входе в сопло вырастет за счет керосина лишь на несколько процентов. Двигатель всасывает больше центнера воздуха в секунду. Несколько килограммов форсажного керосина увеличат эту массу незначительно. Почему же так сильно растет скорость форсажной струи?
Ответ напрашивается сам собой: из-за роста давления перед входом в сопло! Сгорание топлива в камере нагревает газ, повышает его давление, из-за чего и возникает форсажный прирост тяги. Однако сколь ни распространено это доступное объяснение, оно в корне неверно. Все движение в авиационном турбореактивном двигателе создает его сердце — газовая турбина. Она вращает компрессор — легкие двигателя, выполняющие огромное, многократное сжатие центнера воздуха в секунду и дающее движение всем другим устройствам. Турбина выполняет колоссальную работу. Для этого ее с большой силой обтекает газ. На каждой ее лопатке он создает силу, слагающую мощность турбины. Течь газ заставляет перепад давлений. Перепад большой, в несколько атмосфер, или в два-три раза. Если разность давлений уменьшить, течение газа сквозь турбину ослабеет. Падение силы на лопатках вызовет потерю мощности. На снижение мощности сразу отзовется компрессор, уменьшит сжатие сотни кубов воздуха в секунду. Воздух сожмется слабее, меньше накачается в двигатель. Давление газа перед турбиной снизится. Так от компрессора отразится и придет к передней стороне турбины волна обвального падения мощности. Ослабеет сжатие в камерах сгорания перед турбиной. После неустойчивого горения они погаснут. Двигатель встанет.
Чтобы при розжиге форсажа не возникало случайных повышений давления в форсажной камере, сопло расширяется не синхронно с ростом форсажного горения, а заранее. Створки раскрываются с опережением форсажа. Создается ситуация, когда сопло расширилось, а форсаж еще не разгорелся. И тогда происходит классический провал тяги.
Механика с гидравликой
К такому сценарию приведет снижение перепада давлений. Турбина выходит своим газодинамическим тылом прямо в форсажную камеру. Даже небольшое повышение давления в камере сразу подступит к лопаткам турбины. Перепад ослабнет, мощность турбины снизится.
Чтобы давление за турбиной не нарастало, применяется хитрая механика. Сброс добавочного температурного расширения газа достигается за счет расширения самой узкой проточной части сопла. Эта сужающаяся часть образована литыми подвижными трапециевидными створками. На двигателе Ал-31Ф от Су-27 таких створок 16. Похожие 16 створок образуют и расширяющуюся часть сопла. Створки меняют и критический диаметр сопла, и диаметр выходного среза. Управляют створками 16 гидроцилиндров, рабочим телом в которых служит топливо. При переходе на форсажный режим критическое сечение сопла расширяется и одновременно увеличивается выходное сечение. В расширение «сливается» начинающийся рост давления от форсажного нагрева.
Чтобы при розжиге форсажа не возникало случайных повышений давления в форсажной камере, сопло расширяется не синхронно с ростом форсажного горения, а заранее. Створки раскрываются с опережением форсажа. Создается ситуация, когда сопло расширилось, а форсаж еще не разгорелся. И тогда происходит классический провал тяги. Ведь в расширившееся сопло «сливается» обычное давление, пока без форсажа. На форсаже давление за пару секунд восстанавливается до прежнего, при раскрытых створках сопла.
В итоге давление в форсажной камере двигателя Ал-31Ф на форсаже не только не вырастает, но даже незначительно падает, на 0,1−0,2 атм. Перепад давления на турбине практически не меняется, и компрессор продолжает сжимать и закачивать в двигатель центнер воздуха в секунду, столь необходимого для горения топлива.
Схема двигателя
Подогреть раскаленное
Откуда же возникает форсажный прирост тяги? Сопло — тепловой двигатель, который совершает работу, разгоняя газ с запасом энергии. Потенциальную энергию тепла и упругого сжатия газа сопло трансформирует в кинетическую энергию истекающей струи и силу тяги. В скорость истечения преобразуются и сжатие, и нагрев газа. Прибавка энергии любому из них приводит к увеличению скорости. Если добавить газу теплоты, сохраняя давление, скорость струи вырастет. Вырастет тяга и с ростом давления при неизменной температуре. В едином процессе сопло преобразует добавку любой из двух форм энергии. Поэтому нагрев газа перед соплом приводит к росту скорости струи и тяги. Так и возникает форсаж. Можно сказать, что форсажная камера — это большая керосиновая духовка. Она усиливает жар, раскаляя поток перед соплом до тысячи семисот градусов. В этом весь ее смысл. Сопло, как шляпа волшебника, прямым действием превращает жар в добавочную силу.
Остается взглянуть на форсажную струю. Цвет ее зависит от полноты сгорания. Голубой, белый, розоватый, желтый… Пыль в воздухе может менять оттенки огня. Сверхзвуковая струя, покидая сопло, тормозится до дозвуковой скорости. В струе возникает ряд сверхзвуковых скачков уплотнения. Они стоят друг за другом светлыми пятнами, делая струю визуально полосатой. С удалением от сопла пятен больше: струя тормозится, скачки сближаются, пока не исчезают. Как позже и сама струя, с грохотом уносящая самолет и затихающая в небе.
Статья «Тайна форсажного пламени» опубликована в журнале «Популярная механика» (№5, Май 2020).
Комментарии
Отправить комментарий